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Abstract

For a graph G, we define a total k-labeling ϕ as a combination of an edge labeling ϕe(x) →
{1, 2, . . . , ke} and a vertex labeling ϕv(x) → {0, 2, . . . , 2kv}, such that ϕ(x) = ϕv(x) if x ∈
V (G) and ϕ(x) = ϕe(x) if x ∈ E(G), where k = max {ke, 2kv}. The total k-labeling ϕ is called
an edge irregular reflexive k-labeling of G, if for every two edges xy, x′y′ of G, one has wt(xy) 6=
wt(x′y′), where wt(xy) = ϕv(x) + ϕe(xy) + ϕv(y). The smallest value of k for which such
labeling exists is called a reflexive edge strength of G. In this paper, we study the edge irregular
reflexive labeling on plane graphs and determine its reflexive edge strength.

Keywords: edge irregular reflexive labeling; plane graphs; reflexive edge strength.

https://einspem.upm.edu.my/journal


K. K. Yoong et al. Malaysian J. Math. Sci. 16(1): 25–36 (2022) 25 - 36

1 Introduction

All graphs considered in this paper are simple, finite, and undirected with a vertex set V (G)
and an edge set E(G). It is all known that a simple graph is impossible to completely irregular,
which is to have all vertices of distinct degrees. However, it is possible in multigraphs. Therefore,
Chartrand et al. [3] proposed an irregular assignment by replacing the number of edges incident
on every vertex of a multigraph to the edge labels of a simple graph. They defined the irregular
assignment by labeling a set of positive integers {1, 2, . . . , k} to the edges of a graph G of order
at least three, such that every vertex weight is distinct, where the vertex weight is a sum of the
labels of edges that incident to its vertex. The minimum k for which the graphG has the irregular
assignment is called an irregularity strength of the graph G, denoted by s(G).

Bača et al. [2] defined a total k-labeling ρ : V (G)∪E(G)→ {1, 2, . . . , k} to be an edge irregular
total k-labeling of a graph G, if for every two edges xy and x′y′ of the graph G, one has wt(xy) 6=
wt(x′y′), where wt(xy) = ρ(x) + ρ(xy) + ρ(y). The total edge irregularity strength of the graph G,
denoted by tes(G) is defined as the minimum k for which the graph G has an edge irregular total
k-labeling. For a comprehensive survey of graph labelings, please refer [4].

Inspired by the problems of the natural irregular multigraph [3] and the edge irregular total
labeling [2], Tanna et al. [8] subsequently combined these problems by allowing for the vertex
labels representing vertex degrees contributed by the loops. They noticed that (a) the vertex labels
are non-negative even integers, which also representing the fact that each loop contributes 2 to the
vertex degree; and (b) vertex label 0 is permissible as representing a loopless vertex.

Hence, Tanna et al. [8] defined a total k-labeling ϕ as a combination of an edge labeling ϕe :
E(G) → {1, 2, . . . , ke} and a vertex labeling ϕv : V (G) → {0, 2, . . . , 2kv}, in which labeling ϕ is
a total k-labeling of a graph G such that ϕ(x) = ϕv(x) if x ∈ V (G) and ϕ(x) = ϕe(x) if x ∈ E(G),
where k = max {ke, 2kv}. The total k-labeling ϕ is called an edge irregular reflexive k-labeling of
the graph G if for every two edges xy, x′y′ of the graph G, one has wt(xy) 6= wt(x′y′), where
wt(xy) = ϕv(x) + ϕe(xy) + ϕv(y). The smallest value of k for which such labeling exists is called
a reflexive edge strength of the graph G and is denoted by res(G). Bača et al. [1] studied the exact
value of the reflexive edge strength for cycles, Cartesian product of two cycles and for join graphs
of the path and cycle with 2K2. In [5], the authors investigated the exact value of the reflexive
edge strength for disjoint union of s isomorphic copies of generalized Peterson graphs. Tanna et
al. [8] determined the exact value of the reflexive edge strength for prisms and wheels. Zhang et
al. [10] investigated the exact value of the reflexive edge strength for disjoint union of gear graphs
and prism graphs. However, a study of the edge irregular reflexive labeling on plane graphs has
never been discussed previously.

According to Nishizeki et al. [7], a plane graph is a planar graph which is embedded in the
plane, where the planar graph is defined as a graph that is drawn on the plane in such a way that
the intersection of any two edges is empty and every edge only incident with its endpoints. In this
paper, we extend the study of the papers [6] and [9]. Imran et al. [6] studied a vertex irregular
total labeling of four classes of plane graphs and determine its total vertex irregularity strength.
While Tarawneh et al. [9] studied an edge irregular labeling of three classes of plane graphs and
investigated its edge irregularity strength. Thus, we study the edge irregular reflexive labeling of
three classes of plane graphs, namely Cn, An and Bn. Consequently, the exact value of reflexive
edge strength of these graphs is obtained.
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2 Main Results

The following lemma is required.

Lemma 2.1. [8] For every graph G,

res(G) ≥


⌈
|E(G)|

3

⌉
, if |E(G)| 6≡ 2, 3 (mod 6),⌈

|E(G)|
3

⌉
+ 1, if |E(G)| ≡ 2, 3 (mod 6).

Let Q1, Q2 and Q3 be three different paths on the vertices a1, a2, . . . , an, b1, b2, . . . , b2n and
c1, c2, . . . , cn, respectively. Then, Cn is defined as a graph obtained by the disjoint union Q1 ∪
Q2 ∪ Q3 by adjoining the edges aib2i−1 and cib2i, where i = 1, 2, . . . , n. Figure 1 shows a plane
graph Cn.

Figure 1: A plane graph Cn, where n ≥ 2.

The plane graph Cn consists of a vertex set and an edge set that are defined as V (Cn) = {ai, ci :
1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ 2n} and E(Cn) = {aiai+1, cici+1 : 1 ≤ i ≤ n− 1} ∪ {aib2i−1, cib2i : 1 ≤
i ≤ n} ∪ {bibi+1 : 1 ≤ i ≤ 2n− 1}, respectively.

Theorem 2.1. For n ≥ 2, res(Cn) = 2n.

Proof. Since the plane graph Cn has 6n − 3 edges, by Lemma 2.1, we have res(Cn) ≥ k = 2n.
Therefore, k = 2n is the upper bound is proved for the reflexive edge strength of Cn, where n ≥ 2.
Define a total k-labeling ϕ of Cn as follows:

ϕ(ai) = 2(n− 1), if 1 ≤ i ≤ n.

ϕ(bi) = 0, if 1 ≤ i ≤ 2n.

ϕ(ci) = 2n, if 1 ≤ i ≤ n.

ϕ(aiai+1) = 3 + i, if 1 ≤ i ≤ n− 1.

ϕ(aib2i−1) = 1 + i, if 1 ≤ i ≤ n.

ϕ(bibi+1) = i, if 1 ≤ i ≤ 2n− 1.

ϕ(cib2i) = n− 1 + i, if 1 ≤ i ≤ n.

27



K. K. Yoong et al. Malaysian J. Math. Sci. 16(1): 25–36 (2022) 25 - 36

ϕ(cici+1) = n− 2 + i, if 1 ≤ i ≤ n− 1.

Clearly, the maximum vertex label is k = 2n. Moreover, the edge labels are at most 2n and the
maximum is attainable when n = 2. Thus, labeling ϕ is a total k-labeling of Cn. Next, we show
the edge weights of Cn are distinct under the total k-labeling ϕ.

(i) For 1 ≤ i ≤ n− 1,

wtϕ(aiai+1) = ϕ(ai) + ϕ(aiai+1) + ϕ(ai+1)

= 2(n− 1) + 3 + i+ 2(n− 1)

= 4n− 1 + i.

wtϕ(cici+1) = ϕ(ci) + ϕ(cici+1) + ϕ(ci+1)

= 2n+ n− 2 + i+ 2n

= 5n− 2 + i.

(ii) For 1 ≤ i ≤ n,

wtϕ(aib2i−1) = ϕ(ai) + ϕ(aib2i−1) + ϕ(b2i−1)

= 2(n− 1) + 1 + i+ 0

= 2n− 1 + i.

wtϕ(cib2i) = ϕ(ci) + ϕ(cib2i) + ϕ(b2i)

= 2n+ n− 1 + i+ 0 = 3n− 1 + i.

(iii) For 1 ≤ i ≤ 2n− 1,

wtϕ(bibi+1) = ϕ(bi) + ϕ(bibi+1) + ϕ(bi+1) = 0 + i+ 0 = i.

It is easy to verify that the edge weights of Cn are distinct integers in {1, 2, . . . , 6n − 3}. The
theorem holds.

The following Figure 2 depicts an example of the corresponding edge irregular reflexive k-
labeling of the plane graph C4.

Figure 2: The edge irregular reflexive 8-labeling of the plane graph C4.
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Tarawneh et al. [9] defined An as a plane graph obtained by adding the edges b2i−1b2i+1 in
the plane graph Cn, where i = 1, 2, . . . , n− 1, as shown in Figure 3.

Figure 3: A plane graph An, where n ≥ 2.

The plane graph An consists of a vertex set and an edge set that are defined as V (An) =
{ai, bi, ci, di : 1 ≤ i ≤ n} and E(An) = {aiai+1, cici+1, bici+1, didi+1 : 1 ≤ i ≤ n − 1} ∪
{aibi, bici, cidi : 1 ≤ i ≤ n}, respectively.

Theorem 2.2. For n ≥ 2,

res(An) =


⌈
7n−4

3

⌉
, if n 6≡ 0, 1 (mod 6),⌈

7n−4
3

⌉
+ 1, if n ≡ 0, 1 (mod 6).

Proof. The plane graph An has 7n− 4 edges. According to Lemma 2.1, we have

res(An) ≥ k =


⌈
7n−4

3

⌉
, if n 6≡ 0, 1 (mod 6),⌈

7n−4
3

⌉
+ 1, if n ≡ 0, 1 (mod 6).

We now prove that k is the upper bound for the reflexive edge strength of An, where n ≥ 2.
Define a total k-labeling ϕ of An as follows:

For 1 ≤ i ≤ n,
ϕ(ai) = ϕ(bi) = 0,

ϕ(ci) = 2(n− 1),

ϕ(di) =

{
k − 1, if n ≡ 5 (mod 6),
k, if n 6≡ 5 (mod 6).

The edges are labeled in the following ways.

(i) For 1 ≤ i ≤ n− 1,
ϕ(aiai+1) = i,

ϕ(bici+1) = 1 + 2i,
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ϕ(cici+1) = 2 + i,

ϕ(didi+1) =

{
2(3n− k)− 1 + i, if n ≡ 5 (mod 6),
2(3n− k)− 3 + i, if n 6≡ 5 (mod 6).

(ii) For 1 ≤ i ≤ n,
ϕ(aibi) = n− 1 + i,

ϕ(bici) = 2i,

ϕ(cidi) =

{
3n− k + i, if n ≡ 5 (mod 6),
3n− k − 1 + i, if n 6≡ 5 (mod 6).

It can be seen that, (a) for n = 2, 3, 4, 10, the maximum vertex label is k =
⌈
7n−4

3

⌉
which

is greater than or equal to the edge labels; (b) for n ≡ 5 (mod 6), the maximum edge label is
k =

⌈
7n−4

3

⌉
which is greater than all vertex labels; and (c) otherwise, the maximum vertex label is

kwhich is greater than all edge labels, such that k =
⌈
7n−4

3

⌉
+1 for n ≡ 0, 1 (mod 6) or k =

⌈
7n−4

3

⌉
for n 6= 2, 3, 4, 10 and n 6≡ 0, 1, 5 (mod 6). Thus, labeling ϕ is a total k-labeling. Next, we show
the edge weights of An are distinct under the total k-labeling ϕ.

(i) For 1 ≤ i ≤ n− 1,

wtϕ(aiai+1) = ϕ(ai) + ϕ(aiai+1) + ϕ(ai+1) = 0 + i+ 0 = i.

wtϕ(bici+1) = ϕ(bi) + ϕ(bici+1) + ϕ(ci+1)

= 0 + 1 + 2i+ 2(n− 1)

= 2(n− 1 + i) + 1.

wtϕ(cici+1) = ϕ(ci) + ϕ(cici+1) + ϕ(ci+1)

= 2(n− 1) + 2 + i+ 2(n− 1)

= 2(2n− 1) + i.

When n ≡ 5 (mod 6),

wtϕ(didi+1) = ϕ(di) + ϕ(didi+1) + ϕ(di+1)

= k − 1 + 2(3n− k)− 1 + i+ k − 1

= 3(2n− 1) + i.

When n 6≡ 5 (mod 6),

wtϕ(didi+1) = ϕ(di) + ϕ(didi+1) + ϕ(di+1)

= k + 2(3n− k)− 3 + i+ k

= 3(2n− 1) + i.

(ii) For 1 ≤ i ≤ n,

wtϕ(aibi) = ϕ(ai) + ϕ(aibi) + ϕ(bi) = 0 + n− 1 + 1 + 0 = n− 1 + i.

wtϕ(bici) = ϕ(bi) + ϕ(bici) + ϕ(ci) = 0 + 2i+ 2(n− 1) = 2(n− 1 + i).

30



K. K. Yoong et al. Malaysian J. Math. Sci. 16(1): 25–36 (2022) 25 - 36

When n ≡ 5 (mod 6),

wtϕ(cidi) = ϕ(ci) + ϕ(cidi) + ϕ(di)

= 2(n− 1) + 3n− k + i+ k − 1

= 5n− 3 + i.

When n 6≡ 5 (mod 6),

wtϕ(cidi) = ϕ(ci) + ϕ(cidi) + ϕ(di)

= 2(n− 1) + 3n− k − 1 + i+ k

= 5n− 3 + i.

It is easy to verify that the edge weights of An are distinct integers in {1, 2, . . . , 7n − 4}. The
theorem holds.

The following Figure 4 illustrates the corresponding edge irregular reflexive k-labeling of (a)
the plane graph A5 and (b) the plane graph A6.

(a) (b)

Figure 4: (a) The edge irregular reflexive 11-labeling of plane graph A5. (b) The edge irregular reflexive 14-labeling of plane graph A6.

Let P1, P2, P3 and P4 be four distinct paths on the vertices a1, a2, . . . , an, b1, b2, . . . , bn,
c1, c2, . . . , cn, and d1, d2, . . . , dn, respectively. Then, the plane graphBn is defined as the disjoint
union P1 ∪ P2 ∪ P3 ∪ P4 by adjoining the edges aibi, bici, cidi for 1 ≤ i ≤ n and the edges aibi+1,
dici+1 for 1 ≤ i ≤ n− 1, as shown in Figure 5.

Figure 5: A plane graph Bn, where n ≥ 2.

The vertex set and edge set of the plane graph Bn are defined as V (Bn) = {ai, bi, ci, di :
1 ≤ i ≤ n} and E(Bn) = {aiai+1, bibi+1, cici+1, didi+1, aibi+1, dici+1 : 1 ≤ i ≤ n − 1} ∪
{aibi, bici, cidi : 1 ≤ i ≤ n}, respectively.

31



K. K. Yoong et al. Malaysian J. Math. Sci. 16(1): 25–36 (2022) 25 - 36

Theorem 2.3. For n ≥ 2,

res(Bn) =

{
3n− 2, if n ≡ 0 (mod 2),
3n− 1, if n ≡ 1 (mod 2).

Proof. Since the plane graph Bn has 9n− 6 edges, by Lemma 2.1, we have

res(Bn) ≥ k =

{
3n− 2, if n ≡ 0 (mod 2),
3n− 1, if n ≡ 1 (mod 2).

We show that k is the upper bound for the reflexive edge strength of Bn, where n ≥ 2. First,
two cases are distinguished according to the parity of n.
Case 1. n is even. Suppose n = 2, res(B2) ≥ 4 is obtained where the vertices can only be labeled
with 0′s, 2′s and 4′s. The corresponding labelings are (a) for i = 1, 2, the vertices are labeled as
ϕ(ai) = 0, ϕ(bi) = 2(i− 1), ϕ(ci) = 2i and ϕ(di) = 4; and (b) the edges are labeled as ϕ(a1a2) = 1,
ϕ(a1b2) = 3, ϕ(b1b2) = 1, ϕ(c1c2) = 2, ϕ(d1c2) = 2 and ϕ(d1d2) = 4, whereas ϕ(aibi) = 2i,
ϕ(bici) = 1+ i and ϕ(cidi) = 2i−1 for i = 1, 2. It is easy to check thatB2 admits an edge irregular
reflexive 4-labeling as required. Next, a total k-labeling ϕ of Bn for n ≥ 4 is defined as follows:

(i) For 1 ≤ i ≤ n,
ϕ(ai) = 0,

ϕ(bi) = n− 2,

ϕ(ci) = 2n,

ϕ(di) = k,

ϕ(aibi) = 2i,

ϕ(bici) = n− 1 + i,

ϕ(cidi) = n− 3 + 2i.

(ii) For 1 ≤ i ≤ n− 1,
ϕ(aiai+1) = i,

ϕ(aibi+1) = 1 + 2i,

ϕ(bibi+1) = n+ 2 + i,

ϕ(cici+1) = n− 3 + i,

ϕ(dici+1) = n− 2 + 2i,

ϕ(didi+1) = 2n− 1 + i.

Under the labeling ϕ, maximum vertex label is k = 3n− 2 which is greater than or equal to the
edge labels. Thus, labeling ϕ is a total k-labeling ofBn. Next, the edge weights ofBn is computed.
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(i) For 1 ≤ i ≤ n− 1,

wtϕ(aiai+1) = ϕ(ai) + ϕ(aiai+1) + ϕ(ai+1) = 0 + i+ 0 = i.

wtϕ(aibi+1) = ϕ(ai) + ϕ(aibi+1) + ϕ(bi+1)

= 0 + 2i+ 1 + n− 2

= n− 1 + 2i.

wtϕ(bibi+1) = ϕ(bi) + ϕ(bibi+1) + ϕ(bi+1)

= n− 2 + n+ 2 + i+ n− 2

= 3n− 2 + i.

wtϕ(cici+1) = ϕ(ci) + ϕ(cici+1) + ϕ(ci+1)

= 2n+ n− 3 + i+ 2n

= 5n− 3 + i.

wtϕ(dici+1) = ϕ(di) + ϕ(dici+1) + ϕ(ci+1)

= k + n− 2 + 2i+ 2n

= 2(3n− 2 + i).

wtϕ(didi+1) = ϕ(di) + ϕ(didi+1) + ϕ(di+1)

= k + 2n− 1 + i+ k

= 8n− 5 + i.

(ii) For 1 ≤ i ≤ n,

wtϕ(aibi) = ϕ(ai) + ϕ(aibi) + ϕ(bi) = 0 + 2i+ n− 2 = n− 2 + 2i.

wtϕ(bici) = ϕ(bi) + ϕ(bici) + ϕ(ci)

= n− 2 + n− 1 + i+ 2n

= 4n− 3 + i.

wtϕ(cidi) = ϕ(ci) + ϕ(cidi) + ϕ(di)

= 2n+ n− 3 + 2i+ k

= 6n− 5 + 2i.

It clearly shows that all the edge weights of Bn are distinct integers in {1, 2, . . . , 9n− 6}.
Case 2. n is odd. Define a total k-labeling ϕ as follows:

(i) For 1 ≤ i ≤ n,
ϕ(ai) = 0,

ϕ(bi) = n− 1,

ϕ(ci) = 2n,

ϕ(di) = k,

ϕ(aibi) = 2i− 1,

ϕ(bici) = n− 2 + i,

ϕ(cidi) = n− 4 + 2i.
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(ii) For 1 ≤ i ≤ n− 1,
ϕ(aiai+1) = i,

ϕ(aibi+1) = 2i,

ϕ(bibi+1) = n+ i,

ϕ(cici+1) = n− 3 + i,

ϕ(dici+1) = n− 3 + 2i,

ϕ(didi+1) = 2n− 3 + i.

It definitely shows that the maximum vertex label is greater than all edge labels, where the
maximum vertex label is k = 3n−1. Thus, labeling ϕ is a total k-labeling ofBn. Next, we compute
the edge weights of Bn as follows:

(i) For 1 ≤ i ≤ n− 1,

wtϕ(aiai+1) = ϕ(ai) + ϕ(aiai+1) + ϕ(ai+1) = 0 + i+ 0 = i.

wtϕ(aibi+1) = ϕ(ai) + ϕ(aibi+1) + ϕ(bi+1) = 0 + 2i+ n− 1 = n− 1 + 2i.

wtϕ(bibi+1) = ϕ(bi) + ϕ(bibi+1) + ϕ(bi+1)

= n− 1 + n+ i+ n− 1

= 3n− 2 + i.

wtϕ(cici+1) = ϕ(ci) + ϕ(cici+1) + ϕ(ci+1)

= 2n+ n− 3 + i+ 2n

= 5n− 3 + i.

wtϕ(dici+1) = ϕ(di) + ϕ(dici+1) + ϕ(ci+1)

= k + n− 3 + 2i+ 2n

= 2(3n− 2 + i).

wtϕ(didi+1) = ϕ(di) + ϕ(didi+1) + ϕ(di+1)

= k + 2n− 3 + i+ k

= 8n− 5 + i.

(ii) For 1 ≤ i ≤ n,

wtϕ(aibi) = ϕ(ai) + ϕ(aibi) + ϕ(bi) = 0 + 2i− 1 + n− 1 = n− 2 + 2i.

wtϕ(bici) = ϕ(bi) + ϕ(bici) + ϕ(ci)

= n− 1 + n− 2 + i+ 2n

= 4n− 3 + i.

wtϕ(cidi) = ϕ(ci) + ϕ(cidi) + ϕ(di)

= 2n+ n− 4 + 2i+ k

= 6n− 5 + 2i.

It is easy to verify that the edge weights of Bn are distinct integers in {1, 2, . . . , 9n − 6}. The
theorem holds.
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The following Figure 6 shows the corresponding edge irregular reflexive k-labeling of (a) the
plane graph B4 and (b) the plane graph B5.

(a) (b)

Figure 6: (a) The edge irregular reflexive 10-labeling of plane graph B4. (b) The edge irregular reflexive 14-labeling of plane graph B5.

3 Conclusions

In this paper, the reflexive edge strength of the plane graph Cn, the plane graph An, and the
plane graphBn are successfully determined via Theorems 2.1, 2.2, and 2.3, respectively. Moreover,
these results provided further support to the following conjecture.

Conjecture 3.1. [5, 10] Any graph G with maximum degree ∆(G) satisfies:

res(G) = max

{⌊
∆ + 2

2

⌋
,

⌈
|E(G)|

3

⌉
+ r

}
,

where r = 1 for |E(G)| ≡ 2, 3(mod 6), and zero otherwise.

Note that the graphs presented in this extensive study are restricted, only three classes of plane
graphs. Nonetheless, this extensive study clearly showed the reflexive edge strength of these
classes of plane graphs, which is different from the studies of total vertex irregularity strength in
[6] and the edge irregularity strength in [9]. As to our understanding, to study the edge irregular
reflexive labeling on general graphs, or even on planar graphs is an enormous challenge. However,
this present work is the first study of the edge irregular reflexive labeling on plane graphs, which
provides a great potential of extensive study in this area. We suggest to study the following prob-
lems: the edge irregular reflexive labeling on the families of plane graphs, such as outerplanar
graphs, maximal planar graphs, Halin graphs, planar n-trees and families of convex polytopes.
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